d( A', BC)=(T3p)=A'B=√(10²+16²)=2√89
d(A',DC) =(T3p)= A'D=√(10²+12²)=2√61
d(A', BD)=(T3p)= A'P, unde AP⊥BD, P∈BD
AP= cat1*cat2/ip=AB *AD/BD=16*12/20=48/5
pt ca BD= √(16²+12²)=20
A'P=√(10²+(48/5)²)=....
d(AA', AC) =AA'=10
e) d (A; A'O) unde {O}=AC∩BD
AO =20:2=10
d (A; A'O)= AA'*AO/A'O= 10*10/10√2=5√2
f) d (A; (A'CD))
(A'CD)≡identic ≡(A'B'CD)
A'∈(A'AD),
(A'AD), ⊥(A'B'CD),
(A'AD), ∩(A'B'CD)=A'D⇒d (A; (A'CD))
=d(A,A'D)=AA'*AD/A'D= 10*12/2√61=60/√61