1) I4-3√3I=?
[tex]4-3 \sqrt{3}\ \textless \ 0|+3\sqrt{3}\Rightarrow 4 \ \textless \ 3\sqrt{3}|* \sqrt{3} \Rightarrow 4 \sqrt{3} \ \textless \ 9 [/tex]
Dupa relatia urmatoare care este adevarata, verificam daca cea de sus este adevarata:
[tex]
\sqrt{3}\ \textless \ \sqrt{4} \Rightarrow \sqrt{3}\ \textless \ 2|*4 \Rightarrow4 \sqrt{3}\ \textless \ 8\ \textless \ 9(A)[/tex]
=> 4-3√3<0 =>|4-3√3| = 3√3-4
2) I3-2√2I=?
[tex]3-2 \sqrt{2}\ \textless \ 0|+2\sqrt{2}\Rightarrow 3 \ \textless \ 2\sqrt{2}|* \sqrt{2} \Rightarrow 3 \sqrt{2} \ \textless \ 4|
[/tex]
Plecam de la urmatoare relatie care este adevarata si verificam daca cea de sus e adevarata:
[tex]\sqrt{2}\ \textless \ \sqrt{4} \Rightarrow \sqrt{2} \ \textless \ 2|*3 \Rightarrow 3\sqrt{2} \ \textless \ 6 \ \textless\ 4 (F)[/tex]
Deci: 3-2√2 > 0 => |3-2√2| = 3-2√2