n1=37m+r
n2=37(m+1)+r
n1=px
n2=qx, x=(n1,n2), (p,q)=1
n2-n1=37m+37+r-37m-r=37
n2-n1=x(p-q)=37
x=1, p-q=37 x nu poate fi 1 deoarece in acest caz n1 si n2 ar fi prime intre ele. prin urmare ramane solutia x=37 care e c.m.m.d.c
x=37, p-q=1
in consecinta (n1,n2)=37