👤

Se dau trei nr naturale x,y,z in care produsul primelor doua nr este 96,iar produsul ultimelor doua nr este 216.Aflati nr stiind ca jumatate din al treilea nr este cu 1 mai mare decat primul nr.

Răspuns :

[tex]x * y = 96\\ y * z = 216\\ x + 1 = z/2 ==\ \textgreater \ x=z/2-1\\ [/tex]

Inlocuim in prima relatie pe x:

[tex](z/2-1) * y = 96\\ y = 96/(z/2-1)\\[/tex]

Acum inlocuim in a doua relatie pe y:

[tex] \frac{96}{ \frac{z}{2}-1 } *z=216\\ \frac{96}{ \frac{z-2}{2} } *z=216\\ \frac{2 * 96}{ z-2 } *z=216\\ 192z =216(z-2)\\ 192z=216z-432\\ 24z=432 ==\ \textgreater \ z=18\\ [/tex]

[tex]y * z=216 ==\ \textgreater \ y= \frac{216}{z} = \frac{216}{18}=12\\ [/tex]

[tex]x*y=96 ==\ \textgreater \ x= \frac{96}{y}= \frac{96}{12}=8\\ [/tex]