Răspuns :
1) (x+1)^2 - (x-1)^2 = (2x+1) - 4x^2
(x+1+x+1)(x+1-x+1) = 4x^2 + 4x +1 -4x^2 (4x^2 se simplifica cu -4x^2)
(2x+2)(2x) = 4x+1
4x^2 +2= 4x +1 /-4x
0x+2=1 /-2
0x = -1 => Solutia = multimea vida(acel O taiat de un segment)
2) x√7 + 3√5 = 3√7 + x√5
x√7 + 3√5 - x√5 = 3√7 /-3√5
x√7 + x√5 = 3√7-3√5
x(√7-√5) = 3(√7-√5) /: (√7-√5)
x = 3 => S=3
3) x√2+1 = x+√2 /-x
x√2 +1 -x = √2 /-1
x√2-x = √2-1
x(√2-1)= 1(√2-1) /:(√2-1)
x=1 => Sol.= 1
4) (3-√2)x + √2+3=0 /-√2-3
(3-√2)x = -√2-3
3x - √2x = -√2-3
3x- √2x= -3-√2
x(3-√2)=1)-3-√2
5) √6x + √20 = 0
√3•√2•x +√10•√2=0 / :√2
√2(√3x+√10)=0
√3x + √10 = 0 / -√10
√3x = -√10 /:√3
x= -√10supra√3(amplificam fractia cu √3)
x= -√30 supra 3
6) -2x+7=0 / -7
-2x = -7 /:(-2)
-x = -7/2/ • (-1)
x=7/2
(x+1+x+1)(x+1-x+1) = 4x^2 + 4x +1 -4x^2 (4x^2 se simplifica cu -4x^2)
(2x+2)(2x) = 4x+1
4x^2 +2= 4x +1 /-4x
0x+2=1 /-2
0x = -1 => Solutia = multimea vida(acel O taiat de un segment)
2) x√7 + 3√5 = 3√7 + x√5
x√7 + 3√5 - x√5 = 3√7 /-3√5
x√7 + x√5 = 3√7-3√5
x(√7-√5) = 3(√7-√5) /: (√7-√5)
x = 3 => S=3
3) x√2+1 = x+√2 /-x
x√2 +1 -x = √2 /-1
x√2-x = √2-1
x(√2-1)= 1(√2-1) /:(√2-1)
x=1 => Sol.= 1
4) (3-√2)x + √2+3=0 /-√2-3
(3-√2)x = -√2-3
3x - √2x = -√2-3
3x- √2x= -3-√2
x(3-√2)=1)-3-√2
5) √6x + √20 = 0
√3•√2•x +√10•√2=0 / :√2
√2(√3x+√10)=0
√3x + √10 = 0 / -√10
√3x = -√10 /:√3
x= -√10supra√3(amplificam fractia cu √3)
x= -√30 supra 3
6) -2x+7=0 / -7
-2x = -7 /:(-2)
-x = -7/2/ • (-1)
x=7/2
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!